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LETTER TO THE EDITOR

Heisenberg picture operators in the quantum-state
diffusion model

Heinz-Peter Breuer, Bernd Kappler and Francesco Petruccione
Albert-Ludwigs-Universiẗat, Fakulẗat für Physik, Hermann-Herder Strasse 3, D–79104 Freiburg
im Breisgau, Germany

Received 11 November 1997

Abstract. A stochastic simulation algorithm for the computation of multitime correlation
functions which is based on the quantum-state diffusion model of open systems is developed.
The crucial point of the proposed scheme is a suitable extension of the quantum master equation
to a doubled Hilbert space which is then unravelled by a stochastic differential equation.

Within the framework of the recently developed stochastic wavefunction approach to open
quantum systems [1–8] the state of a system is not described by a reduced density matrix but
by a pure stochastic state vectorψt , the covariance matrix of which is equal to the reduced
density matrix of the system. One of these models which was motivated by a dynamical
description of the measurement process [9] is the quantum-state diffusion model introduced
by Gisin and Percival [5, 6]. In this approach, the time evolution of the wavefunctionψt
is governed by the Ito stochastic differential equation

dψt = −iHψtdt + 1
2

∑
j

[2〈L†j 〉ψtLj − L†jLj − 〈Lj 〉ψt 〈L†j 〉ψt ]ψt dt

+
∑
j

[L− 〈Lj 〉ψt ]ψt dξjt (1)

where〈Lj 〉ψt is a short-hand notation for〈ψt |L|ψt 〉, and dξjt is the differential of a complex-
valued Wiener process with means and correlations

〈dξjt 〉 = 〈dξitdξjt 〉 = 0 〈dξitdξ ∗j t 〉 = δijdt. (2)

The operatorsH andLj acting in the Hilbert spaceH of the system are the free Hamiltonian
and the Lindblad operators describing dissipation, respectively. The link to the density
matrix description of open quantum systems is established—as mentioned above—through
the covariance matrix of the stochastic wavefunctionψt , i.e.

ρt = E(|ψt 〉〈ψt |). (3)

The symbolE denotes the expectation value with respect of the stochastic processesψt .
The equation of motion of the density matrixρt is obtained by inserting equation (1) into
equation (3) which yields the quantum master equation

ρ̇(t) = −i[H, ρ(t)] + 1
2

∑
j

[2Ljρ(t)L
†
j − L†jLjρ(t)− ρ(t)L†jLj ]. (4)
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This equation—or alternatively the stochastic differential equation (1)—determines the time
evolution of one-time expectation values of system observables. Multitime correlation
functions which are of special interest in quantum optics or in solid-state physics are
not specified by these equations. In order to define these quantities, we will first define
the matrix elements of some system operatorA in the Heisenberg picture. In the density
matrix approach, these matrix elements are defined through the quantum regression theorem
[10, 11] as

At(φ0, ψ0) ≡ 〈φ0, t0|A(t)|ψ0, t0〉 = Tr{AV (t, t0){|ψ0〉〈φ0|}} (5)

whereV (t, t0) is the time-evolution superoperator corresponding to the quantum master
equation (4). Unfortunately, the quantum regression theorem cannot be applied directly
to the stochastic wavefunction approach, since the initial ‘density matrix’|ψ0〉〈φ0| is not
necessarily Hermitian, and hence it can not in general be the covariance matrix of some
stochastic wavefunction. This problem can be resolved by extending the quantum master
equation into a doubled Hilbert spacẽH = H⊕H as follows. We define a density matrix
ρ̃(t) as

ρ̃(t) =
(
ρ̃11(t) ρ̃12(t)

ρ̃21(t) ρ̃22(t)

)
(6)

whereρ̃ij (t) are operators onH and accordingly replace the HamiltonianH and the Lindblad
operatorsLj by the operators

H̃ =
(
H 0
0 H

)
L̃j =

(
Lj 0
0 Lj

)
(7)

in the doubled Hilbert spacẽH. Then we formulate the extended quantum master equation

˙̃ρ(t) = −i[H̃ , ρ̃(t)] + 1
2

∑
j

[2L̃j ρ̃(t)L̃
†
j − L̃†j L̃j ρ̃(t)− ρ̃(t)L̃†j L̃j ]. (8)

The crucial point of this construction is that each elementρ̃ij (t) of the density matrix̃ρ(t)
is a solution of the original quantum master equation (4). Consider now the initial condition

ρ̃(t0) = |θ0〉〈θ0| ≡ 1

2

( |φ0〉〈φ0| |φ0〉〈ψ0|
|ψ0〉〈φ0| |ψ0〉〈ψ0|

)
(9)

whereθ0 ≡ (φ0, ψ0)
T /
√

2 is an element of the doubled Hilbert spacẽH. (Throughout this
letter the superscriptT denotes the transpose.) Obviously, the matrix elements of some
operatorA are then given by

At(φ0, ψ0) = 2 Tr{Aρ̃21(t)}. (10)

By construction, the initial density matrix̃ρ(t0) = |θ0〉〈θ0| is positive and we may choose
any unravelling of the extended quantum master equation (8) by a stochastic process for the
calculation of its time evolution and hence for the calculation of operators in the Heisenberg
picture (a similar idea has been proposed in [4, appendix D]).

Applying the above procedure to the quantum-state diffusion model we obtain for
example the equation of motion for the wavefunctionθt = (φt , ψt )T ∈ H̃ in the Ito form

dθt = −iH̃ θtdt + 1
2

∑
j

[2〈L̃†j 〉θt L̃j − L̃†j L̃j − 〈L̃j 〉θt 〈L̃†j 〉θt ]θt dt +
∑
j

[L̃− 〈L̃j 〉θt ]θt dξjt .

(11)

The matrix elements ofA are simply obtained as

At(φ0, ψ0) = 2Eθ0(〈φt |A|ψt 〉) (12)
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Figure 1. Calculation of Heisenberg operator matrix element〈φ0|σ+(t)|φ0〉: analytical solution
(heavy line), numerical solution using the quantum-state diffusion unravelling of the extended
quantum master equation for 103 realizations (diamonds), and the method proposed by Gisin
(light lines) for the step sizesh = 0.01, 0.001, 0.0001.

whereEθ0 denotes the expectation value with respect to the initial conditionθ0. Note that
equation (11) is constructed in such a way that the norm of the state vectorθt is preserved,
i.e. ||θt ||2 = ||φt ||2 + ||ψt ||2 = 1. From a numerical point of view it is more efficient to
drop this restriction and work with unnormalized state vectorsθ̂t , whose time evolution is
governed by the quasilinear stochastic differential equation [5]

dθ̂t = −iH̃ θ̂t dt +
∑
j

L̃j θ̂t (dξjt + 〈L̃†j 〉θtdt)− 1
2

∑
j

L̃
†
j L̃j θ̂t dt. (13)

Accordingly, the matrix elements of the operatorA are defined as

At(φ0, ψ0) = 2Eθ0(〈φ̂t |A|ψ̂t 〉/||θ̂t ||2). (14)

As a particular example, we consider a two-level system withH = 0 coupled to the
vacuum using the Lindblad operatorσ−, and calculate the matrix element〈φ0|σ+(t)|ψ0〉,
whereφ0 = (1, 0)T andψ0 = (1, 1)T /

√
2. The analytical solution

〈φ0|σ+(t)|ψ0〉 = 1√
2

e−t/2 (15)

is readily obtained by integrating the quantum master equation. In figure 1 we compare
the numerical solution obtained using the scheme described above for 103 realizations
(diamonds) with the analytical solution (heavy line). Obviously, both solutions are in
excellent agreement.

Alternatively, Gisin [13] proposed a similar scheme for the calculation of matrix
elements which is based on the coupled system of stochastic differential equations

dψt = −iHψtdt + 1
2

∑
j

[2lj (ψt , φt )
∗Lj − L†jLj − lj (φt , ψt )lj (ψt , φt )∗]ψt dt
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+
∑
j

[L− lj (φt , ψt )]ψt dξjt

dφt = −iHφtdt + 1
2

∑
j

[2lj (φt , ψt )
∗Lj − L†jLj − lj (ψt , φt )lj (φt , ψt )∗]φt dt

+
∑
j

[L− lj (ψt , φt )]φt dξjt (16)

wherelj (α, β) = 〈α|Lj |β〉/〈α|β〉. These equations are constructed in such a way that the
scalar product〈φt |ψt 〉 remains constant during the time evolution of the system, i.e. the
matrix element of the unity operatorIt = I are calculated correctly for each realization of
the stochastic process (and not only in the mean). In addition, he also proposed [13] a pair of
quasilinear equations, which could be used for the numerical simulation. However, although
the above equations correctly reproduce the equation of motion for the matrix elements, the
numerical integration of the stochastic differential equations for the system described above,
suggests that these equations are not stable in general. In order to demonstrate this, in
figure 1 we have also plotted the numerical solution of the quasilinear stochastic differential
equations for various step sizes (h = 0.01, 0.001, 0.0001) and 104 realizations each. The
systematic deviation of the numerical and analytical solutions fort & 0.3γ−1 is evident.
We believe that these deviations are due to the fact that the solution of the deterministic
part of the stochastic differential equation is unstable for this particular model which leads
to immense fluctuations in the solution of the stochastic differential equation. Note that the
fluctuations are even much larger for the integration of the ‘unity-preserving’ equation (16).

The simulation algorithm in the doubled Hilbert space for the calculation of matrix
elements in the Heisenberg picture is the basis for the computation of multitime correlation
functions such asg(t, t + τ) = 〈ψ0|A(t + τ)B(t)|ψ0〉 and we propose the following
procedure. Start in the stateψ0 and propagate it up to the timet using the stochastic
differential equation (1) to obtainψt . Define the state vectorθt = (ψt , Bψt)T /

√
1+ ||Bψt ||2

and propagate it up to the timet + τ by integrating the extended stochastic differential
equation (11). The two-time correlation functiong(t, t + τ) is then given by

g(t, t + τ) = E[(1+ ||Bψt ||2)〈φt+τ |A|ψt+τ 〉]. (17)

As a specific example we have computed the first-order correlation function〈σ+(t +
τ)σ−(t)〉s for a coherently driven two-level atom on resonance in the steady state with
Rabi frequency� = 10γ . To this end, we started with a random initial-state vectorψ0

drawn from a uniform distribution onH and propagated it up tot = 30γ−1 in order to reach
the steady-state regime. Then we proceeded as described above. The result of the numerical
simulation is shown in figure 2(a) for 104 realizations. The numerical performance of the
algorithm is demonstrated in figure 2(b) where we have plotted the computational time
which is necessary to obtain a given accuracy measured by the relative mean square error
(full curve) and the estimated standard deviation of the samples (broken curve). These
results are compared with an alternative procedure which is based on an unravelling of the
extended quantum master equation by a piecewise deterministic jump process (see [12]).
The algorithm based on quantum jumps is about two times faster than the one based on the
quantum-state diffusion model. At first glance, this result is surprising, since the individual
realizations of the diffusion process are smooth and ‘closer’ to the real solution. However,
this is outweighed by the fact that for the integration of the stochastic differential equation
we have to draw two random numbers per time step and Lindblad operator, whereas in the
quantum jump method we have to generate only two random numbers per jump. Thus, a
single realization of the diffusion process is more accurate, but takes longer to be computed.
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Figure 2. Calculation of the first-order correlation function〈σ+(τ )σ−〉s for a coherently driven
two-level atom on resonance. (a) Analytical solution versus the numerical solution (diamonds)
using the quantum-state diffusion model for 104 realizations. (b) CPU time in seconds versus
the relative error for the simulation using the quantum-state diffusion equation (QSDE) and
the quantum jump (QJ) method. The full curves represent the mean square deviation of the
numerical solution from the exact solution and the broken curves show the estimated standard
deviation of the numerical solution.

To summarize, we have shown that operators in the Heisenberg picture and multitime
correlation functions can be calculated within the framework of the quantum-state diffusion
model by extending the stochastic differential equation which governs the time evolution
of the wavefunction to the doubled Hilbert space. This procedure is in complete agreement
with the quantum regression theorem. However, we have also shown that the latter fact is
not sufficient to ensure that a particular simulation algorithm is of practical use. Although
the algorithm proposed in [13] is in accordance with the quantum regression theorem, it
seems not to be stable in general. On the other hand, the scheme we proposed in this letter
completely relies on the numerical stability of the quantum-state diffusion model.
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